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In [II G rl ‘g orian considered the problem of detached flow past a slender solid of revolution 
by an ideal incompressible fluid at zero angle of attack and with small cavitation numbers. 
We shall use more exact estimates to derive a differential equation for the source density 
on the axis of symmetry. Though similar to the expression obtained in [l], our equation 
contains additional terms. The problem reduces to our differential equation only if we make 
additional assumptions (i.e. over and above those of [l] ) about the order of smallness of 
the cavitation namber 0. If such assumptions are not made, it reduces to an iategro- 
differential equation. 
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Fig. 1 

Let us consider the flow diagram shown in Fig. 1. Here x0, n, is the body; rl, x2 is the 
cavity; rl (2, t) is the boundary of the cavity; x2, + 00 is the wake behind the body and 
cavity; Y (t) is the absolute velocity of the body; P is the pressure inside the cavity; 

puo is the pressure at infinity; the velocity at infinity is equal to zero. 
We assume that r, z, V, P, and t are already dimensionless, so that their unity values 

are associated with some Lo, VO, PO = poV$, to = Lo / 1 V, 19 where V,, is the velo- 
city of the body at a given instant; p is the density of the fluid. 

We shall attempt to find the dimensionless potential of the velocity field beyond the 
boundaries of the body, cavity, and wake in the form 

We assume that the cavity is slender at the point x c\r 1, i.e. that at this point 

In addition, we assume tentatively the validity of the estimates 

IsISEe” 

I gt 1, 1 filx I < ~2 for zl< r < m 

(3) 

(4) 

and that g tends to eero quite rapidly as x + 0~. 
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From (1) we have 

co 

GE 
+ S 1/(E; - x)z+ riL = T1 

(5) 

To within higher-order small quantities we have 

(f4 

(7) 

Similarly, we find that the integrals 1, and I, conform to the relations 

)J~~~~EZ21n~ln~~ 

= - 2gl 111 r + 2gt In I- 26 In (r / 1) = - 23t In r 

16 I <I lnax o”h I f < $q 

By hypothesis, the integral Jr satisfies the relation 

Js- jrnaxgl 16~~ 

Simfl=lY, for vra and V’ we have the estimates 

(9) 

2x(x, 4 
qr=------, r (cpd” - 2 s Ed (10) 

The boundary conditions at the cavity boundary are the kinematic condition and the 
condition of constant pressure, 

ar, / dt = T,, P, - P, = T’t + 112 [(Pr2 + (Px21 (11) 

From the first equation of (11) we have 

1 &la 2 --=__- 
g=- 4 at 4 u* 

u = r12 (12) 

Substituting (6). (7). (8), and (10) into the second relation of (11) and recalling (121, we 
obtain 

1 1 (‘L*y 
4 ult In 2~ -t 7 

R (x0, t) 
-t ,z__o, +J1+Js+J1+Ja-+o u. (13) 

P,-- Pl 
a= 

‘I2 POVO' = 2 (P_, - PI) (14) 
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Here o is the cavitatioa number. All the terma of ~ta~o~ifferen~al equation (13) 
with the exception of the firet cavitation number and (I, + I$ have been estimated by 
meana of the quantity E’. Assuming that u ;sS 8’. and recallfng the eatfmate for (Ii + I$, 

w4 find that 

I uff In u I< 9 ln I In e I, or 1 utt I < 
r?ln/lnef 

, ln e , (15) 

Next, s~stitut~g the eetimats g, PI ntt into (?f, w4 obtain in its placs the sxprension 

I Jz -I- Ja I 6 
G (In 1 In e I)” 

Ilnel d @ (16) 

Hence, instead of (‘1% we can take the stronger inequality 

ex 
jU**lII&[~Ee”, or I ‘Ltt I G 1 I* e 1 

This means that the estimate for (7) can be strengthened still further, and that (ja + 1,) 
can be neglected in (13). 

As a result we obtain the following differential equation at the cavity boundary: 

The additional conditions for this equation are the conditions for x =.xX and the initial 
data. The gfx, t) for z. < x < .vr and xr < x Q) must be prescribed on the basis of addi- 
tional considerations (4.6. the equations of motion of slender bodies). 

For CT = 0 and for steady motion u (.v, t) = II (x + t). Eq. (18) yields the following 
familiar asymptotic expression for the cavity boundary [Z]: 

c 

In the case of steady motion and a Riabashinskii flow diagram with conical cavitator 
and contractor fg, = conet, g (0) = Of Eq. (18) becomes 

1 
u”lnU+~~ 

(0 _ 26 -” 2u (Xl) 
(a - so) 

ln  x - so + I/@ - XOY 4u 
x - x1 + V/1x - x1)2 + u 

+ 

2u (4) 
+ (x0 - x*)Z In 

x3--x- Jf,-(x3-x)“+ 24 

x2 - z + V/(X% - 2)” + n 
(19) 

with boundary conditions expressing the continuity of the derivative at the streamline at 
the head and tail of the cavity. 

2u (4 
rJba)- g =% =o (20) 

Numerical computations using (19) and (20) indicate that for an asymmetric 
Riabnshinekii diagram with cavitator and contractor length6 differing by a factor of two aud 
for CT < 0.01, the sum of forces acting on the cavitator and contractor is smaller than one- 
tenth of the cavitator drag. Exact solution, on the other hand, indicates that the d’Alembert 
paradox most hold. 

The author wishes to thank GA. Konstantinov for carrying out the numerical compu- 
tations and S.S. Grigorian for discussing the results of the study prior to the writing of 
the present paper. 
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A setf-sfmil~r solution of the problem of propagation of a perturbation produced by a 
glancing collision against the boundary af B heff-space whoss matedal conforms to the 
Prandtl-Reuss equations is constructed. 

Simple conditions of solvability of the problem for two types of boundary conditions 
are constructed. These botmdary conditions correspond to the cases of 1) totd adhesion and 
2) Coulomb dry friction. 

1, ThePrandtl-Rensseqnatious nre sometimes used to describe the motion of e soil 
under large loads [I]. Problems of this type usuaBy contain two space variables and time, 
and can only be solved numerically. In some such problems it is necessary to consider the 
interaction of waves with u hard surface. The boundary conditions which this requires have 
not been investigated enffieientfy. 

It is natural to attempt to gain insight into the situation by way of some simple pro- 
blem. We shell consider sn elementary case which nevertheless retains some of the salient 
features of complex problems of wave end surface interaction. 

Let a hard slab be pressed by the force ue against the boundary of a half-space. At 
t = 0 the slab is set in motion with the constant velocity ue directed along the boundary. 

For t <O the half-spuce is e rest, and the stress it experfences is constant. 
Since the basic equations allow for the appearance of tsngent stresses in the medium, 

we can stipulate at the boundary either an adhesion condition or the dry friction law 
natural in solid body contuct. 

In Section 2 we shall show that under the adhesion condition the problem has a solu- 
tion only for velocities restricted by the &quality ve,< Y* ; a unique solution does not exist 
for vg > v,. It will be shown that a solution exists only if the coefficient satisfias some 
(quite sfmple) inequality. 

The notation is es foifows: 1: ie a coordinate fthe x-axis is directed into the helf- 
space); u is the v&city along x; u is the velocity along the normal to z; K is the bulk 
modahra; C is the deer modalor; 8 is the volume compression; Q is the stress along x; 
r is the tangent stress; p is the hydrostatic pressure; f is the coefficient of friction. 
The plasticity comiition la 


